\qquad
\qquad Date: \qquad

Order of Operations and Evaluating Expressions Guide Notes

EVALUATE ALGEBRAIC EXPRESSIONS means to find its numerical value.

ORDER OF OPERATIONS is a method used to evaluate an expression involving more than one operation. In algebraic expressions, it can only by evaluated if the values of the variables are known.

Step 1 Replace the variables with their numerical values.
Step 2 Evaluate expressions inside grouping symbols.
Step 3 Evaluate all powers.
Step 4 Do all multiplications and/or divisions from left to right.
Step 5 Do all additions and/or subtractions from left to right.

Example: Evaluate $\boldsymbol{z}^{\mathbf{4}}-\mathbf{3}$, if $\boldsymbol{z}=\mathbf{2}$.

$$
\begin{aligned}
z^{4}-3 & =2^{4}-3 \\
& =16-3 \\
z^{4}-3 & =13
\end{aligned}
$$

Sample Problem 1: Evaluate each expression if $\boldsymbol{x}=\mathbf{2}, \boldsymbol{y}=\mathbf{4}$, and $\boldsymbol{z}=\mathbf{6}$.
a. $x^{3}+10 y=2^{3}+10 \cdot 4=8+40=48$
b. $\frac{22}{x}+16=\frac{22}{2}+16=11+16=27$
c. $\frac{z}{3}+y=\frac{6}{3}+4 \quad=2+4=6$
d. $y+z+x=4+6+2=12$
e. $x+5=2+5=7$

GROUPING SYMBOLS, such as parentheses () or brackets [], indicate the order in which the operations should be performed first.

Example: Evaluate $\boldsymbol{a}^{2}-\left(b^{3}-4 \boldsymbol{c}\right)$, if $\boldsymbol{a}=\mathbf{8}, \boldsymbol{b}=5$, and $\boldsymbol{c}=\mathbf{3}$.

$$
\begin{aligned}
a^{2}-\left(b^{3}-4 c\right) & =8^{2}-\left(5^{3}-4 \cdot 3\right) & & \text { Replace } a \text { with } 8, b \text { with } 5, \text { and } c \text { with } 3 . \\
& =64-(125-4 \cdot 3) & & \text { Evaluate } 8^{2} \text { and } 5^{3} \\
& =64-(125-12) & & \text { Multiply } 4 \text { and } 3 \\
a^{2}-\left(b^{3}-4 c\right) & =64-113 & & \text { Subtract } 125 \text { and } 12 \\
& -49 & & \text { Subtract } 64 \text { from } 113
\end{aligned}
$$

\qquad Date: \qquad

Order of Operations and Evaluating Expressions Guide Notes

Sample Problem 2: Evaluate each expression if $\boldsymbol{r}=\mathbf{4}, \boldsymbol{s}=\mathbf{6}, \boldsymbol{t}=3$, and $\boldsymbol{u}=12$.
f. $2 r+s t^{2}-u=2(4)+(6)\left(3^{2}\right)-12=8+6(9)-12=54-4=50$
g. $t u-r s=(3)(12)-(4)(6)=36-24=12$
h. $s t-4 r$
$=(6)(3)-4(4)$
$=18-16$
$=2$
i. $r^{3}+u+s^{t}=4^{3}+12+6^{3}=64+12+216=292$
j. $t u-3 r=(3)(12)-3(4)=36-12=24$

FRACTION BAR is another type of grouping symbol. It indicates that the numerator and denominator should each be treated as a single value.

Example: Evaluate $\frac{x^{2}-1}{4 y^{2}}$, if $x=9$, and $y=2$.

$$
\begin{aligned}
\frac{x^{2}-1}{4 y^{2}} & =\frac{9^{2}-1}{4 \cdot 2^{2}} & & \text { Replace } x \text { with } 9, \text { and } y \text { with } 2 . \\
& =\frac{81-1}{4 \cdot 4} & & \text { Evaluate } 9^{2} \text { and } 2^{2} \\
& =\frac{81-1}{16} & & \text { Multiply } 4 \text { and } 81 \\
& =\frac{80}{16} & & \text { Subtract } 81 \text { from } 1 \\
\frac{x^{2}-1}{4 y^{2}} & =5 & & \text { Divide } 80 \text { to } 16
\end{aligned}
$$

Sample Problem 3: Evaluate each expression if $\boldsymbol{r}=\mathbf{4}, \boldsymbol{s}=\mathbf{6}, \boldsymbol{t}=\mathbf{3}$, and $\boldsymbol{u}=\mathbf{1 2}$.
a. $\frac{2 r(s-t)}{t u-s}$
$=\frac{2(4)(6-3)}{(3)(12)-6}$
$=\frac{8(3)}{36-6}$
$=\frac{24}{30}$
$=\frac{4}{5}$
b. $\frac{u}{s}+\frac{3 s}{t^{2}} \quad=\frac{12}{6}+\frac{3(6)}{3^{2}}$
$=2+\frac{18}{9}$
$=2+2$
$=4$
c. $\frac{r s^{2}-3 u}{2}$
$=\frac{(4)\left(6^{2}\right)-3(12)}{2}$
$=\frac{4(36)-36}{2}$
$=\frac{144-36}{2}$
$=\frac{108}{2}=54$
d. $\frac{3 r+s}{t^{2}-s}$
$=\frac{3(4)+6}{3^{2}-6}$
$=\frac{12+6}{9-6}$
$=\frac{18}{3}$
$=6$
e. $\frac{2 u+s^{2}}{r+2 t}=\frac{2(12)+6^{2}}{4+2(3)}$
$=\frac{24+36}{4+6}$
$=\frac{60}{10} \quad=6$

