贯 Algebra1Coach.com Order of Operations and Evaluating Expressions

Unit 1 Lesson 2

ORDER OF OPERATIONS AND EVALUATING EXPRESSIONS

Students will be able to:
 evaluate algebraic expression
 by using the order of operations.

Key Vocabulary:

- Evaluate
- Order of Operations
- Grouping Symbols
- Fraction bar

ORDER OF OPERATIONS AND EVALUATING EXPRESSIONS

EVALUATE ALGEBRAIC EXPRESSIONS means to find its numerical value.

ORDER OF OPERATIONS is a method used to evaluate an expression involving more than one operation. In algebraic expressions, it can only by evaluated if the values of the variables are known.

Step 1 Replace the variables with their numerical values.
Step 2 Evaluate expressions inside grouping symbols.
Step 3 Evaluate all powers.
Step 4 Do all multiplications and/or divisions from left to right.
Step 5 Do all additions and/or subtractions from left to right.

ORDER OF OPERATIONS AND EVALUATING EXPRESSIONS

Example: Evaluate $z^{4}-3$, if $z=2$.

$$
\begin{aligned}
z^{4}-3 & =2^{4}-3 & & \text { Replace } z \text { with } 2 \\
& =16-3 & & \text { Evaluate } \mathbf{2}^{4} \\
z^{4}-3 & =13 & & \text { Subtract } \mathbf{1 6} \text { and } \mathbf{3}
\end{aligned}
$$

ORDER OF OPERATIONS AND EVALUATING EXPRESSIONS

Sample Problem 1: Evaluate each expression if $\boldsymbol{x}=\mathbf{2}, \boldsymbol{y}=\mathbf{4}$, and $z=6$.
a. $x^{3}+10 y$
b. $\frac{22}{x}+16$
c. $\frac{z}{3}+y$
d. $y+z+x$
e. $x+5$

ORDER OF OPERATIONS AND EVALUATING EXPRESSIONS

Sample Problem 1: Evaluate each expression if $\boldsymbol{x}=\mathbf{2}, \boldsymbol{y}=\mathbf{4}$, and $z=6$.
a. $x^{3}+10 y=2^{3}+10 \cdot 4=8+40=48$
b. $\frac{22}{x}+16=\frac{22}{2}+16=11+16=27$
c. $\frac{z}{3}+\boldsymbol{y}=\frac{6}{3}+4=2+4=6$
d. $y+z+x=4+6+2=12$
e. $\boldsymbol{x}+5=2+5=7$

ORDER OF OPERATIONS AND EVALUATING EXPRESSIONS

GROUPING SYMBOLS, such as parentheses () or brackets [], indicate the order in which the operations should be performed first.

Example: Evaluate $\boldsymbol{a}^{2}-\left(\boldsymbol{b}^{\mathbf{3}}-\mathbf{4} \boldsymbol{c}\right)$, if $\boldsymbol{a}=8, \boldsymbol{b}=5$, and $\boldsymbol{c}=\mathbf{3}$.

$$
\begin{aligned}
a^{2}-\left(b^{3}-4 c\right) & =8^{2}-\left(5^{3}-4 \cdot 3\right) & & \text { Replace } a \text { with } \mathbf{8}, \boldsymbol{b} \text { with } 5, \text { and } \boldsymbol{c} \text { with } \mathbf{3} . \\
& =64-(125-4 \cdot 3) & & \text { Evaluate } 8^{2} \text { and } 5^{3} \\
& =64-(125-12) & & \text { Multiply } \mathbf{4} \text { and } \mathbf{3} \\
& =\mathbf{6 4 - 1 1 3} & & \text { Subtract } \mathbf{1 2 5} \text { and } \mathbf{1 2} \\
a^{2}-\left(b^{3}-\mathbf{4 c}\right) & =-\mathbf{4 9} & & \text { Subtract } \mathbf{6 4} \text { from } \mathbf{1 1 3}
\end{aligned}
$$

ORDER OF OPERATIONS AND EVALUATING EXPRESSIONS

Sample Problem 2: Evaluate each expression if $\boldsymbol{r}=\mathbf{4 , s} \boldsymbol{s}=\mathbf{6}, \boldsymbol{t}=\mathbf{3}$, and $\boldsymbol{u}=12$.
a. $\mathbf{2 r}+\boldsymbol{s} \boldsymbol{t}^{\mathbf{2}}-\boldsymbol{u}$
b. $\boldsymbol{t u}-\boldsymbol{r s}$
c. $\boldsymbol{s t} \boldsymbol{-} \boldsymbol{4 r}$
d. $\boldsymbol{r}^{\mathbf{3}}+\boldsymbol{u}+\boldsymbol{s}^{\boldsymbol{t}}$
e. $t u-3 r$

ORDER OF OPERATIONS AND EVALUATING EXPRESSIONS

Sample Problem 2: Evaluate each expression if $\boldsymbol{r}=\mathbf{4}, \boldsymbol{s}=\mathbf{6}, \boldsymbol{t}=\mathbf{3}$, and $\boldsymbol{u}=12$.
a. $2 r+s t^{2}-u=2(4)+(6)\left(3^{2}\right)-12=8+6(9)-12=54-4=50$
b. $\boldsymbol{t u}-r \boldsymbol{s}$
$=(3)(12)-(4)(6)=36-24=12$
c. $\boldsymbol{s t} \boldsymbol{-} \boldsymbol{4 r}$
$=(6)(3)-4(4)$
$=18-16$
$=2$
d. $r^{3}+\boldsymbol{u}+s^{t}$
$=4^{3}+12+6^{3}$
$=64+12+216=292$
e. $t u-3 r$
$=(3)(12)-3(4)$
$=36-12$
$=24$

ORDER OF OPERATIONS AND EVALUATING EXPRESSIONS

FRACTION BAR is another type of grouping symbol. It indicates that the numerator and denominator should each be treated as a single value.

Example: Evaluate $\frac{x^{2}-1}{4 y^{2}}$, if $\boldsymbol{x}=9$, and $y=2$.

| $\frac{x^{2}-1}{4 y^{2}}=\frac{9^{2}-1}{4 \cdot 2^{2}}$ | Replace x with 9,
 and y with 2. | $\frac{x^{2}-1}{4 y^{2}}=\frac{80}{16}$ |
| :--- | :--- | :--- | Subtract 81 from $\mathbf{1}$

ORDER OF OPERATIONS AND EVALUATING EXPRESSIONS

Sample Problem 3: Evaluate each expression if $\boldsymbol{r}=\mathbf{4}, \boldsymbol{s}=\mathbf{6}, \boldsymbol{t}=\mathbf{3}$, and $\boldsymbol{u}=12$.
a. $\quad 2 r(s-t)$
$t u-s$
b. $\frac{u}{s}+\frac{3 s}{t^{2}}$
c. $\frac{r s^{2}-3 u}{2}$
d. $\frac{3 r+s}{t^{2}-s}$
e. $\frac{2 u+s^{2}}{r+2 t}$

ORDER OF OPERATIONS AND EVALUATING EXPRESSIONS

Sample Problem 3: Evaluate each expression if $\boldsymbol{r}=\mathbf{4}, \boldsymbol{s}=\mathbf{6}, \boldsymbol{t}=\mathbf{3}$, and $\boldsymbol{u}=12$.
a. $\frac{2 r(s-t)}{t u-s}=\frac{2(4)(6-3)}{(3)(12)-6}=\frac{8(3)}{36-6} \quad=\frac{24}{30} \quad=\frac{4}{5}$
b. $\frac{u}{s}+\frac{3 s}{t^{2}}=\frac{12}{6}+\frac{3(6)}{3^{2}}=2+\frac{18}{9}=2+2=4$
c. $\frac{r s^{2}-3 u}{2}=\frac{(4)\left(6^{2}\right)-3(12)}{2}=\frac{4(36)-36}{2}=\frac{144-36}{2}=\frac{108}{2}=54$
d. $\frac{3 r+s}{t^{2}-s}=\frac{3(4)+6}{3^{2}-6}=\frac{12+6}{9-6}=\frac{18}{3}=6$
e. $\frac{2 u+s^{2}}{r+2 t}=\frac{2(12)+6^{2}}{4+2(3)}=\frac{24+36}{4+6}=\frac{60}{10}=6$

