Algebra1Coach.com Order of Operations and Evaluating Expressions

Unit 1 Lesson 2

Students will be able to:

evaluate algebraic expression by using the order of operations.

Key Vocabulary:

- Evaluate
- Order of Operations
- Grouping Symbols
- Fraction bar

EVALUATE ALGEBRAIC EXPRESSIONS means to find its numerical value.

ORDER OF OPERATIONS is a method used to evaluate an expression involving more than one operation. In algebraic expressions, it can only by evaluated if the values of the variables are known.

Step 1 Replace the variables with their numerical values.

- **Step 2** Evaluate expressions inside grouping symbols.
- **Step 3** Evaluate all powers.
- **Step 4** Do all multiplications and/or divisions from left to right.
- **Step 5** Do all additions and/or subtractions from left to right.

Example: Evaluate $z^4 - 3$, if z = 2.

 $z^4 - 3 = 2^4 - 3$ Replace z with 2. = 16 - 3 Evaluate 2^4 $z^4 - 3 = 13$ Subtract 16 and 3

Sample Problem 1: Evaluate each expression if x = 2, y = 4, and z = 6. a. $x^3 + 10y$ b. $\frac{22}{x} + 16$ c. $\frac{z}{3} + y$

d. y + z + x

e. *x* + 5

Sample Problem 1: Evaluate each expression if x = 2, y = 4, and z = 6.

- a. $x^3 + 10y = 2^3 + 10 \cdot 4 = 8 + 40 = 48$
- b. $\frac{22}{x} + 16 = \frac{22}{2} + 16 = 11 + 16 = 27$
- C. $\frac{z}{3} + y = \frac{6}{3} + 4 = 6$
- d. y + z + x = 4 + 6 + 2 = 12
- e. x + 5 = 2 + 5 = 7

GROUPING SYMBOLS, such as parentheses () or brackets [], indicate the order in which the operations should be performed first.

Example: Evaluate
$$a^2 - (b^3 - 4c)$$
, if $a = 8$, $b = 5$, and $c = 3$.
 $a^2 - (b^3 - 4c) = 8^2 - (5^3 - 4 \cdot 3)$ Replace a with 8 , b with 5 , and c with 3 .
 $= 64 - (125 - 4 \cdot 3)$ Evaluate 8^2 and 5^3
 $= 64 - (125 - 12)$ Multiply 4 and 3
 $= 64 - 113$ Subtract 125 and 12
 $a^2 - (b^3 - 4c) = -49$ Subtract 64 from 113

Sample Problem 2: Evaluate each expression if r = 4, s = 6, t = 3, and u = 12.

- a. $2r + st^2 u$
- b. *tu-rs*
- c. *st* 4*r*
- d. $r^3 + u + s^t$
- e. *tu* 3*r*

Sample Problem 2: Evaluate each expression if r = 4, s = 6, t = 3, and u = 12.

- a. $2r + st^2 u = 2(4) + (6)(3^2) 12 = 8 + 6(9) 12 = 54 4 = 50$
- b. tu rs = (3)(12) (4)(6) = 36 24 = 12
- c. st 4r = (6)(3) 4(4) = 18 16 = 2
- d. $r^3 + u + s^t = 4^3 + 12 + 6^3 = 64 + 12 + 216 = 292$
- e. tu 3r = (3)(12) 3(4) = 36 12 = 24

FRACTION BAR is another type of grouping symbol. It indicates that the numerator and denominator should each be treated as a single value.

Example: Evaluate
$$\frac{x^2 - 1}{4y^2}$$
, if $x = 9$, and $y = 2$.
 $\frac{x^2 - 1}{4y^2} = \frac{9^2 - 1}{4 \cdot 2^2}$ Replace x with 9 , $\frac{x^2 - 1}{4y^2} = \frac{80}{16}$ Subtract 81 from 1
 $\frac{x^2 - 1}{4y^2} = \frac{81 - 1}{4 \cdot 4}$ Evaluate 9^2 and $\frac{x^2 - 1}{4y^2} = 5$ Divide 80 to 16
 $\frac{x^2 - 1}{4y^2} = \frac{81 - 1}{16}$ Multiply 4 and 81

Sample Problem 3: Evaluate each expression if r = 4, s = 6, t = 3, and u = 12.

a. 2r(s-t)tu-sb. $\frac{u}{s} + \frac{3s}{t^2}$ C. $rs^2 - 3u$ 2 d. 3r + s $\overline{t^2-s}$ e. $2u + s^2$ $\frac{r}{r+2t}$

Sample Problem 3: Evaluate each expression if r = 4, s = 6, t = 3, and u = 12.

a.
$$\frac{2r(s-t)}{tu-s} = \frac{2(4)(6-3)}{(3)(12)-6} = \frac{8(3)}{36-6} = \frac{24}{30} = \frac{4}{5}$$

b.
$$\frac{u}{s} + \frac{3s}{t^2} = \frac{12}{6} + \frac{3(6)}{3^2} = 2 + \frac{18}{9} = 2 + 2 = 4$$

c.
$$\frac{rs^2 - 3u}{2} = \frac{(4)(6^2) - 3(12)}{2} = \frac{4(36) - 36}{2} = \frac{144 - 36}{2} = \frac{108}{2} = 54$$

d.
$$\frac{3r+s}{t^2-s} = \frac{3(4)+6}{3^2-6} = \frac{12+6}{9-6} = \frac{18}{3} = 6$$

e.
$$\frac{2u+s^2}{r+2t} = \frac{2(12)+6^2}{4+2(3)} = \frac{24+36}{4+6} = \frac{60}{10} = 6$$