\qquad Period: \qquad Date: \qquad

Properties of Real Numbers Guide Notes

PROPERTIES OF REAL NUMBERS
Let $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} be any real numbers

1. IDENTITY PROPERTIES
A. Additive Identity

The sum of any number and $\mathbf{0}$ is equal to the number. Thus, $\mathbf{0}$ is called the additive identity.

For any number \boldsymbol{a}, the sum of \boldsymbol{a} and $\mathbf{0}$ is \boldsymbol{a}.

B. Multiplicative Identity

The product of any number and $\mathbf{1}$ is equal to the number. Thus, $\mathbf{1}$ is called the multiplicative identity.

For any number \boldsymbol{a}, the product of \boldsymbol{a} and $\mathbf{1}$ is \boldsymbol{a}.
2. INVERSE PROPERTIES
A. Additive Inverse

The sum of any number and its opposite number (its negation) is equal to $\mathbf{0}$. Thus, $\mathbf{0}$ is called the additive inverse.

For any number \boldsymbol{a}, the sum of \boldsymbol{a} and $-\boldsymbol{a}$ is $\mathbf{0}$.
B. Multiplicative Property of Zero

For any number \boldsymbol{a}, the product of \boldsymbol{a} and $\mathbf{0}$ is $\mathbf{0}$.
C. Multiplicative Inverse

The product of any number and its reciprocal is equal to $\mathbf{1}$. Thus, the number's reciprocal is called the multiplicative inverse.

For any number \boldsymbol{a}, the product of \boldsymbol{a} and its reciprocal $\frac{1}{a}$ is $\mathbf{1}$.

For any numbers $\frac{\boldsymbol{a}}{\boldsymbol{b}}$, where $\boldsymbol{b} \neq \mathbf{0}$, the product of $\frac{\boldsymbol{a}}{\boldsymbol{b}}$ and its reciprocal $\frac{\boldsymbol{b}}{\boldsymbol{a}}$ is 1 .
\qquad Period: \qquad Date: \qquad

Properties of Real Numbers Guide Notes

Sample Problem 1: Name the property in each equation. Then find the value of \boldsymbol{x}.
a. $24 \cdot x=24$
b. $\quad \boldsymbol{x}+\mathbf{0}=\mathbf{5 1}$
c. $\boldsymbol{x} \cdot \mathbf{6}=\mathbf{1}$
d. $x+19=0$
e. $\boldsymbol{x} \cdot \mathbf{7}=\mathbf{0}$
f. $\frac{3}{5} \cdot x=1$

3. EQUALITY PROPERTIES

A. Reflexive

Any quantity is equal to itself.
For any number $\boldsymbol{a}, \boldsymbol{a}=\boldsymbol{a}$.
B. Symmetric

If one quantity equals a second quantity, then the second quantity equals the first quantity.

For any numbers \boldsymbol{a} and \boldsymbol{b}, if $\boldsymbol{a}=\boldsymbol{b}$ then $\boldsymbol{b}=\boldsymbol{a}$.
C. Transitive

If one quantity equals a second quantity and the second quantity equals a third quantity, then the first quantity equals the third quantity.

For any numbers $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c}, if $\boldsymbol{a}=\boldsymbol{b}$ and $\boldsymbol{b}=\boldsymbol{c}$, then $\boldsymbol{a}=\boldsymbol{c}$.
D. Substitution

A quantity may be substituted for its equal in any expression.

If $\boldsymbol{a}=\boldsymbol{b}$, then \boldsymbol{a} may be replaced by \boldsymbol{b} in any expression.
\qquad Period: \qquad Date: \qquad

Properties of Real Numbers Guide Notes

Sample Problem 2: Evaluate $x(x y-5)+y \cdot \frac{1}{y}$, if $\boldsymbol{x}=2$ and $\boldsymbol{y}=3$. Name the property of equality used in each step.
4. COMMUTATIVE PROPERTIES
A. Addition

The order in which two numbers are added does not change their sum.

For any numbers \boldsymbol{a} and $\boldsymbol{b}, \boldsymbol{a}+\boldsymbol{b}$ is equal to $\boldsymbol{b}+\boldsymbol{a}$.
B. Multiplication

The order in which two numbers are multiplied does not change their product.

For any numbers \boldsymbol{a} and $\boldsymbol{b}, \boldsymbol{a} \cdot \boldsymbol{b}$ is equal to $\boldsymbol{b} \cdot \boldsymbol{a}$.
5. ASSOCIATIVE PROPERTIES
A. Addition

The way three or more numbers are grouped when adding does not change their sum.

For any numbers $\boldsymbol{a}, \boldsymbol{b}$, and $\boldsymbol{c},(\boldsymbol{a}+\boldsymbol{b})+\boldsymbol{c}$ is equal to $\boldsymbol{a}+(\boldsymbol{b}+\boldsymbol{c})$.
B. Multiplication

The way three or more numbers are grouped when multiplying does not change their product.

For any numbers $\boldsymbol{a}, \boldsymbol{b}$, and $\boldsymbol{c},(\boldsymbol{a} \cdot \boldsymbol{b}) \cdot \boldsymbol{c}$ is equal to $\boldsymbol{a} \cdot(\boldsymbol{b} \cdot \boldsymbol{c})$.

Sample Problem 3: Simplify variable expressions. Show all possible answers.
a. $6+(x+3)$
b. $(1+x)+2$
c. $5 \cdot 7 x$
d. $\quad(x+4)+8$
e. $(6)(3 x)$

