_____ Period: ______ Date: ____

Properties of Real Numbers Guide Notes

PROPERTIES OF REAL NUMBERS

Let a, b, and c be any real numbers

1. IDENTITY PROPERTIES

A. Additive Identity

The sum of any number and $\mathbf{0}$ is equal to the number. Thus, $\mathbf{0}$ is called the additive identity.

For any number a, the sum of a and a is a.

$$a + 0 = 0 + a = a$$

B. Multiplicative Identity

The product of any number and ${f 1}$ is equal to the number. Thus, ${f 1}$ is called the multiplicative identity.

For any number a, the product of a and a is a.

$$a \cdot 1 = 1 \cdot a = a$$

2. INVERSE PROPERTIES

A. Additive Inverse

The sum of any number and its opposite number (its negation) is equal to **0**. Thus, **0** is called the **additive inverse**.

For any number a, the sum of a and -a is a.

$$a + (-a) = (-a) + a = 0$$

B. Multiplicative Property of Zero

For any number a, the product of a and a is a.

$$a \cdot 0 = 0 \cdot a = 0$$

C. Multiplicative Inverse

The product of any number and its reciprocal is equal to 1. Thus, the number's reciprocal is called the multiplicative inverse.

For any number a, the product of a and its reciprocal $\frac{1}{a}$ is 1.

$$a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$$

For any numbers
$$\frac{a}{b'}$$
, where $b \neq 0$, the product of $\frac{a}{b}$ and its reciprocal $\frac{b}{a}$ $\frac{a}{b} \cdot \frac{b}{a} = \frac{b}{a} \cdot \frac{a}{b} = 1$ is 1.

$$\frac{a}{b} \cdot \frac{b}{a} = \frac{b}{a} \cdot \frac{a}{b} = 1$$

Period: ______ Date: _____

Properties of Real Numbers Guide Notes

Sample Problem 1: Name the property in each equation. Then find the value of x.

a.
$$24 \cdot x = 24$$

$$x = 1$$

b.
$$x + 0 = 51$$

$$x = 51$$

c.
$$x \cdot 6 = 1$$

$$c = \frac{1}{6}$$

d.
$$x + 19 = 0$$

$$x = -19$$

e.
$$x \cdot 7 = 0$$

$$x = 0$$

f.
$$\frac{3}{5} \cdot x = 1$$

$$x=\frac{5}{3}$$

3. EQUALITY PROPERTIES

A. Reflexive

Any quantity is equal to itself.

For any number
$$a$$
, $a = a$.

$$a = a$$

B. Symmetric

If one quantity equals a second quantity, then the second quantity equals the first quantity.

For any numbers
$$a$$
 and b , if $a = b$ then $b = a$.

$$a = b$$

$$b = a$$

C. Transitive

If one quantity equals a second quantity and the second quantity equals a third quantity, then the first quantity equals the third quantity.

For any numbers
$$a$$
, b , and c , if $a = b$ and $b = c$, then $a = c$.

$$a = b$$

$$b = c$$

$$a = c$$

D. Substitution

A quantity may be substituted for its equal in any expression.

If
$$a = b$$
, then a may be replaced by b in any expression.

$$a = b$$

$$3a = 3 \cdot b$$

Properties of Real Numbers Guide Notes

Sample Problem 2: Evaluate $x(xy-5)+y\cdot\frac{1}{y}$, if x=2 and y=3. Name the property of equality used in each step.

$$x(xy-5)+y\cdot\frac{1}{y} = 2(2\cdot 3-5)+3\cdot\frac{1}{3}$$

Substitution:
$$x=2$$
 and $y=3$

$$= 2(2 \cdot 3 - 5) + 1$$

Multiplicative inverse:
$$3 \cdot \frac{1}{3} = 1$$

$$= 2(6-5)+1$$

Substitution:
$$2 \cdot 3 = 6$$

$$= 2(1) + 1$$

Substitution:
$$6 - 5 = 1$$

$$=$$
 $2+1$

Multiplicative identity:
$$2(1) = 2$$

$$x(xy-5)+y\cdot\frac{1}{y} = 3$$

Substitution:
$$2 + 1 = 3$$

4. COMMUTATIVE PROPERTIES

A. Addition

The order in which two numbers are added does not change their sum.

For any numbers a and b, a + b is equal to b + a.

$$a+b=b+a$$

B. Multiplication

The order in which two numbers are multiplied does not change their product.

For any numbers \mathbf{a} and \mathbf{b} , $\mathbf{a} \cdot \mathbf{b}$ is equal to $\mathbf{b} \cdot \mathbf{a}$.

$$ab = ba$$

5. ASSOCIATIVE PROPERTIES

A. Addition

The way three or more numbers are grouped when adding does not change their sum.

For any numbers a, b, and c, (a + b) + c is equal to a + (b + c).

$$(a+b)+c=a+(b+c)$$

B. Multiplication

The way three or more numbers are grouped when multiplying does not change their product.

For any numbers a, b, and c, $(a \cdot b) \cdot c$ is equal to $a \cdot (b \cdot c)$.

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

_____Period: ______Date: _____

Properties of Real Numbers Guide Notes

Sample Problem 3: Simplify variable expressions. Show all possible answers.

a.
$$6 + (x + 3)$$

$$= 9 + x$$
 $= x + 9$

$$= x + 9$$

b.
$$(1+x)+2 = 3+x = x+3$$

$$= 3 + x$$

$$= x + 3$$

c.
$$5 \cdot 7x$$

$$= 35x$$

d.
$$(x+4)+8 = x+12 = 12+x$$

$$= x + 12$$

$$= 12 + x$$

e.
$$(6)(3x)$$

$$= 18x$$