比 Algebra1Coach.com Properties of Real Numbers

Unit 1 Lesson 4

PROPERTIES OF REAL NUMBERS

Students will be able to:

Recognize and use the properties of real numbers.

Key Vocabulary:

- Identity Property
- Inverse Property
- Equality Property
- Associative Property
- Commutative Property

PROPERTIES OF REAL NUMBERS

PROPERTIES OF REAL NUMBERS

Let $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} be any real numbers

1. IDENTITY PROPERTIES

A. Additive Identity

The sum of any number and $\mathbf{0}$ is equal to the number. Thus, $\mathbf{0}$ is called the additive identity.

For any number \boldsymbol{a}, the sum of \boldsymbol{a} and $\mathbf{0}$ is \boldsymbol{a}.

$$
a+\mathbf{0}=\mathbf{0}+\boldsymbol{a}=\boldsymbol{a}
$$

PROPERTIES OF REAL NUMBERS

PROPERTIES OF REAL NUMBERS

Let $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} be any real numbers

1. IDENTITY PROPERTIES

B. Multiplicative Identity

The product of any number and $\mathbf{1}$ is equal to the number. Thus, $\mathbf{1}$ is called the multiplicative identity.

For any number \boldsymbol{a}, the product of \boldsymbol{a} and $\mathbf{1}$ is \boldsymbol{a}. $a \cdot 1=1 \cdot a=a$

PROPERTIES OF REAL NUMBERS

2. INVERSE PROPERTIES

A. Additive Inverse

The sum of any number and its opposite number (its negation) is equal to $\mathbf{0}$. Thus, $\mathbf{0}$ is called the additive inverse.

$$
\boldsymbol{a}+(-\boldsymbol{a})=\mathbf{0}
$$

For any number \boldsymbol{a}, the sum of \boldsymbol{a} and $-\boldsymbol{a}$ is $\mathbf{0}$.

$$
(-a)+\boldsymbol{a}=\mathbf{0}
$$

PROPERTIES OF REAL NUMBERS

2. INVERSE PROPERTIES

B. Multiplicative Property of Zero

For any number \boldsymbol{a}, the product of \boldsymbol{a} and $\mathbf{0}$ is $\mathbf{0}$.

$$
a \cdot 0=0
$$

$\mathbf{0} \cdot \boldsymbol{a}=\mathbf{0}$

PROPERTIES OF REAL NUMBERS

2. INVERSE PROPERTIES

C. Multiplicative Inverse

The product of any number and its reciprocal is equal to 1. Thus, the number's reciprocal is called the multiplicative inverse.

For any number \boldsymbol{a}, the product of \boldsymbol{a} and its

$$
\text { reciprocal } \frac{1}{a} \text { is } \mathbf{1}
$$

$$
a \cdot \frac{1}{a}=\frac{1}{a} \cdot a=1
$$

For any numbers $\frac{\boldsymbol{a}}{\boldsymbol{b}}$, where $\boldsymbol{b} \neq \mathbf{0}$, the product

$$
\text { of } \frac{\boldsymbol{a}}{\boldsymbol{b}} \text { and its reciprocal } \frac{\boldsymbol{b}}{a} \text { is } \mathbf{1 .}
$$

$$
\frac{a}{b} \cdot \frac{b}{a}=\frac{b}{a} \cdot \frac{a}{b}=1
$$

PROPERTIES OF REAL NUMBERS

Sample Problem 1: Name the property in each equation. Then find the value of \boldsymbol{x}.
a. $\quad 24 \cdot x=24$
b. $\quad \boldsymbol{x}+\mathbf{0}=\mathbf{5 1}$
c. $\boldsymbol{x} \cdot \mathbf{6}=\mathbf{1}$
d. $\quad x+19=0$
e. $\boldsymbol{x} \cdot \mathbf{7}=\mathbf{0}$
f. $\frac{3}{5} \cdot x=1$

PROPERTIES OF REAL NUMBERS

Sample Problem 1: Name the property in each equation. Then find the value of \boldsymbol{x}.
a. $24 \cdot \boldsymbol{x}=\mathbf{2 4}$ Multiplicative identity $\quad \boldsymbol{x}=\mathbf{1}$
b. $\boldsymbol{x}+\mathbf{0}=51$ Additive identity $\quad \boldsymbol{x}=51$
c. $\boldsymbol{x} \cdot \mathbf{6}=1$ Multiplicative inverse
$x=\frac{1}{6}$
d. $x+19=0 \quad$ Additive inverse
$x=-19$
e. $\boldsymbol{x} \cdot \mathbf{7}=\mathbf{0} \quad$ Multiplicative product of zero $\boldsymbol{x}=\mathbf{0}$
f. $\frac{3}{5} \cdot x=1 \quad$ Multiplicative inverse $\quad x=\frac{5}{3}$

PROPERTIES OF REAL NUMBERS

3. EQUALITY PROPERTIES

A. Reflexive

Any quantity is equal to itself.

$$
\text { For any number } \boldsymbol{a}, \boldsymbol{a}=\boldsymbol{a} . \quad \boldsymbol{a}=\boldsymbol{a}
$$

B. Symmetric

If one quantity equals a second quantity, then the second quantity equals the first quantity.

For any numbers \boldsymbol{a} and \boldsymbol{b}, if $\boldsymbol{a}=\boldsymbol{b}$ then $\boldsymbol{b}=\boldsymbol{a} . \quad \boldsymbol{a}=\boldsymbol{b} \quad \boldsymbol{b}=\boldsymbol{a}$

PROPERTIES OF REAL NUMBERS

3. EQUALITY PROPERTIES

C. Transitive

If one quantity equals a second quantity and the second quantity equals a third quantity, then the first quantity equals the third quantity.

$$
\begin{aligned}
& \text { For any numbers } \boldsymbol{a}, \boldsymbol{b} \text {, and } \boldsymbol{c} \text {, if } \boldsymbol{a}=\boldsymbol{b} \text { and } \boldsymbol{b}=\quad \boldsymbol{a}=\boldsymbol{b} \quad \boldsymbol{b}=\boldsymbol{c} \\
& \qquad \boldsymbol{c} \text {, then } \boldsymbol{a}=\boldsymbol{c}
\end{aligned}
$$

PROPERTIES OF REAL NUMBERS

3. EQUALITY PROPERTIES

D. Substitution

A quantity may be substituted for its equal in any expression.

If $\boldsymbol{a}=\boldsymbol{b}$, then \boldsymbol{a} may be replaced by \boldsymbol{b} in any

$$
a=b
$$ expression.

$$
3 a=3 \cdot b
$$

PROPERTIES OF REAL NUMBERS

Sample Problem 2: Evaluate $\boldsymbol{x}(\boldsymbol{x y}-5)+\boldsymbol{y} \cdot \frac{\mathbf{1}}{\boldsymbol{y}}$, if $\boldsymbol{x}=\mathbf{2}$ and $\boldsymbol{y}=\mathbf{3}$.
Name the property of equality used in each step.

PROPERTIES OF REAL NUMBERS

Sample Problem 2: Evaluate $\boldsymbol{x}(\boldsymbol{x y}-5)+\boldsymbol{y} \cdot \frac{1}{\boldsymbol{y}}$, if $\boldsymbol{x}=\mathbf{2}$ and $\boldsymbol{y}=\mathbf{3}$. Name the property of equality used in each step.

$$
\begin{aligned}
x(x y-5)+y \cdot \frac{1}{y} & =2(2 \cdot 3-5)+3 \cdot \frac{1}{3} & & \text { Substitution: } x=2 \text { and } y=3 \\
& =2(2 \cdot 3-5)+1 & & \text { Multiplicative inverse: } 3 \cdot \frac{1}{3}=1 \\
& =2(6-5)+1 & & \text { Substitution: } 2 \cdot 3=6 \\
& =2(1)+1 & & \text { Substitution: } 6-5=1 \\
& =2+1 & & \text { Multiplicative identity: } 2(1)=2 \\
x(x y-5)+y \cdot \frac{1}{y} & =3 & & \text { Substitution: } 2+1=3
\end{aligned}
$$

PROPERTIES OF REAL NUMBERS

4. COMMUTATIVE PROPERTIES

A. Addition

The order in which two numbers are added does not change their sum.

$$
\text { For any numbers } \boldsymbol{a} \text { and } \boldsymbol{b}, \boldsymbol{a}+\boldsymbol{b} \text { is equal to } \quad \boldsymbol{a}+\boldsymbol{b}=\boldsymbol{b}+\boldsymbol{a}
$$

$$
b+a
$$

PROPERTIES OF REAL NUMBERS

4. COMMUTATIVE PROPERTIES

B. Multiplication

The order in which two numbers are multiplied does not change their product.

For any numbers \boldsymbol{a} and $\boldsymbol{b}, \boldsymbol{a} \cdot \boldsymbol{b}$ is equal to $\boldsymbol{b} \cdot \quad \boldsymbol{a} \boldsymbol{b}=\boldsymbol{b} \boldsymbol{a}$ a.

PROPERTIES OF REAL NUMBERS

5. ASSOCIATIVE PROPERTIES

A. Addition

The way three or more numbers are grouped when adding does not change their sum.

$$
\begin{aligned}
& \text { For any numbers } \boldsymbol{a}, \boldsymbol{b} \text {, and } \boldsymbol{c},(\boldsymbol{a}+\boldsymbol{b})+\boldsymbol{c} \text { is } \\
& \qquad \begin{array}{c}
(\boldsymbol{a}+\boldsymbol{b})+\boldsymbol{c} \\
\text { equal to } \boldsymbol{a}+(\boldsymbol{b}+\boldsymbol{c}) .
\end{array} \\
& =\boldsymbol{a}+(\boldsymbol{b}+\boldsymbol{c})
\end{aligned}
$$

PROPERTIES OF REAL NUMBERS

5. ASSOCIATIVE PROPERTIES

B. Multiplication

The way three or more numbers are grouped when multiplying does not change their product.

> For any numbers $\boldsymbol{a}, \boldsymbol{b}$, and $\boldsymbol{c},(\boldsymbol{a} \cdot \boldsymbol{b}) \cdot \boldsymbol{c}$ is equal $$
\text { to } \boldsymbol{a} \cdot(\boldsymbol{b} \cdot \boldsymbol{c}) .
$$

PROPERTIES OF REAL NUMBERS

Sample Problem 3: Simplify variable expressions. Show all possible

 answers.a. $6+(x+3)$
b. $(1+x)+2$
c. $5 \cdot 7 \boldsymbol{x}$
d. $(x+4)+8$
e. (6)(3x)

PROPERTIES OF REAL NUMBERS

Sample Problem 3: Simplify variable expressions. Show all possible answers.
a. $6+(x+3)=9+x=x+9$
b. $(1+x)+2=3+x=x+3$
c. $5 \cdot 7 x=35 x$
d. $(x+4)+8=x+12=12+x$
e. $(6)(3 x)=18 x$

