\qquad
\qquad Date: \qquad

An Introduction to Equations Assignment

Tell whether each equation is true, false, or open. Explain.

1. $\mathbf{4 t}+\mathbf{6}=\mathbf{1 0}$
2. $14-7=27-21$
3. $-\mathbf{1 1}+4=-7+15$

Find the solution of each equation.
4. $-8 x+4=12$
5. $7+(-5 x)=-33$
6. $\quad 4 x=21+x$

Use a table to find the solution of each equation.
7. $5 x-11=4$
8. $7 x-4=38$
9. $3 x-2=-8$

Use a table to find two consecutive integers between which the solution lies.
10. $\mathbf{1 4 x}-\mathbf{6 6}=\mathbf{4 0}$
11. $3 x+4=36$
12. $7 x+8=68$

Find the solution of each equation using a table. If the solution lies between two consecutive integers, identify those integers.
13. $2 x+13=24$
14. $x-8=25$
15. $\mathbf{6 x}-\mathbf{8}=\mathbf{3 1}$
16. $\mathbf{1 9}+\mathbf{2 x}=\mathbf{3 1}$

Write an equation for each sentence.

17. The ratio of nine and a number \boldsymbol{y} is equal to the square of a number \boldsymbol{x}.
18. A number x more than seven is equal to the product of a number y and twenty.
19. The product of five and eight is equal to the product of twenty and a number \boldsymbol{y}.
20. The sum of a number \boldsymbol{y} and fourteen is negative six.
\qquad Date: \qquad

An Introduction to Equations Assignment

ANSWER

Tell whether each equation is true, false, or open. Explain.

1. $\mathbf{4 t}+\mathbf{6}=\mathbf{1 0}$

variable t

OPEN
2. $14-7=27-21$
$7=7$
TRUE
5. $7+(-5 x)=-33$

$$
\begin{gathered}
7+(-5 x)=-33 \\
(-5 x)=-33-7 \\
-5 x=-40 \\
x=8
\end{gathered}
$$

3. $-\mathbf{1 1}+4=-7+15$
$-7 \neq 8$
FALSE
4. $\quad 4 x=21+x$

$$
\begin{gathered}
4 x=21+x \\
4 x-x=21 \\
3 x=21 \\
x=7
\end{gathered}
$$

Use a table to find the solution of each equation.
7. $5 x-11=4$

x	$=5 x-11$
2	$=5(2)-11$ $=10-11$ $=-1$
3	$=5(3)-11$ $=15-11$ $=4$
4	$=5(4)-11$ $=20-11$
	$x=3$

8. $7 x-4=38$

9. $3 x-2=-8$

\boldsymbol{x}	$=3 x-2$
-1	$\begin{gathered} =3(-1)-2 \\ =-3-2 \\ =-5 \end{gathered}$
-2	$\begin{gathered} =3(-2)-2 \\ =-6-2 \\ =-8 \end{gathered}$
-3	$\begin{gathered} =3(-3)-2 \\ =-9-2 \\ =-11 \\ =-2 \end{gathered}$

12. $7 x+8=68$

$$
\begin{array}{ll}
x & =7 x+8 \\
8 & =7(8)+8 \\
8 & =56+8 \\
& =64 \\
9 & =7(9)+8 \\
& =63+8 \\
& =71 \\
10 & =7(10)+8 \\
& =70+8 \\
& =78 \\
8<x & <9
\end{array}
$$

\qquad Date: \qquad

An Introduction to Equations Assignment

Find the solution of each equation using a table. If the solution lies between two consecutive integers, identify those integers.
13. $2 x+13=24$

\boldsymbol{x}	$=2 x+13$
5	$\begin{gathered} =2(5)+13 \\ =10+13 \\ =23 \end{gathered}$
6	$\begin{gathered} =2(6)+13 \\ =12+13 \end{gathered}$
7	$\begin{gathered} =2(7)+13 \\ =14+13 \\ =27 \end{gathered}$
$5<x<6$	

15. $6 x-8=31$

\boldsymbol{x}	$=6 x-8$
6	$\begin{gathered} =6(6)-8 \\ =36-8 \\ =28 \end{gathered}$
7	$\begin{gathered} =6(7)-8 \\ =42-8 \\ =34 \end{gathered}$
8	$\begin{gathered} =6(8)-8 \\ =48-8 \\ =40 \end{gathered}$

14. $x-8=25$

\boldsymbol{x}	$=x-8$
32	$\begin{gathered} =(32)-8 \\ =32-8 \\ =24 \end{gathered}$
33	$\begin{gathered} =(33)-8 \\ =33-8 \\ =25 \end{gathered}$
34	$\begin{gathered} =(34)-8 \\ =34-8 \\ =26 \end{gathered}$

16. $19+2 x=31$

x	$=19+2 x$
5	$\begin{gathered} =19+2(5) \\ =19+10 \\ =29 \end{gathered}$
6	$\begin{gathered} =19+2(6) \\ =19+12 \\ =31 \end{gathered}$
7	$\begin{gathered} =19+2(7) \\ =19+14 \\ =33 \end{gathered}$

Write an equation for each sentence.

17. The ratio of nine and a number y is equal to the square of a number $x \cdot \frac{9}{y}=x^{2}$
18. A number x more than seven is equal to the product of a number \boldsymbol{y} and twenty. $\boldsymbol{x}+\mathbf{7}=\mathbf{2 0} \boldsymbol{y}$
19. The product of five and eight is equal to the product of twenty and a number $\boldsymbol{y} .5(8)=20 y$
20. The sum of a number \boldsymbol{y} and fourteen is negative six. $\quad \boldsymbol{y}+\mathbf{1 4}=\mathbf{- 6}$
