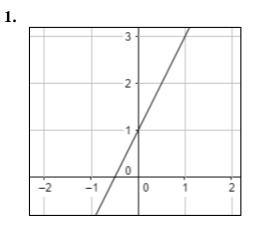
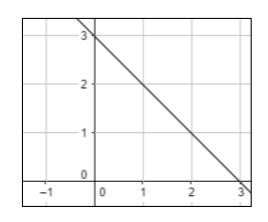
Rate of Change and Slope Assignment

Determine whether the rate of change is constant for each data set. If yes, identify the rate of change both numerically and in words.

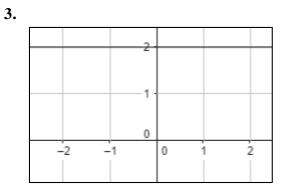

1. Football Game's Stats

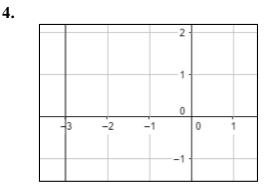
Game	Goals
1	3
2	6
3	9

2. Distance Covered


Hours	Distance
1	50
2	150
3	80

Find the slope of each line given below.





1

Rate of Change and Slope Assignment

Find the slope of the line passing through the points given below.

1. (2,1) and (3,3)

2. (-1,-4) and (0,-7)

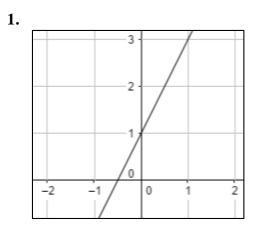
3. (1,0) and (-4,2)

4. (8,-4) and (-6,-3)

_____Period: _____ Date: _____ Rate of Change and Slope Assignment

Determine whether the rate of change is constant for each data set. If yes, identify the rate of change both numerically and in words.

1. **Football Game's Stats**


Game	Goals
1	3
2	6
3	9

Rate of change is constant.

Numerically: $\frac{6-3}{2-1} = 3$

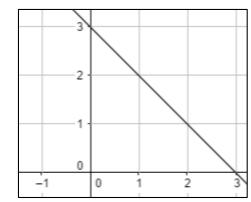
In Words: 3 goals per games played.

Find the slope of each line given below.

Slong -	rise
Slope =	run

rise = 2, run = 1

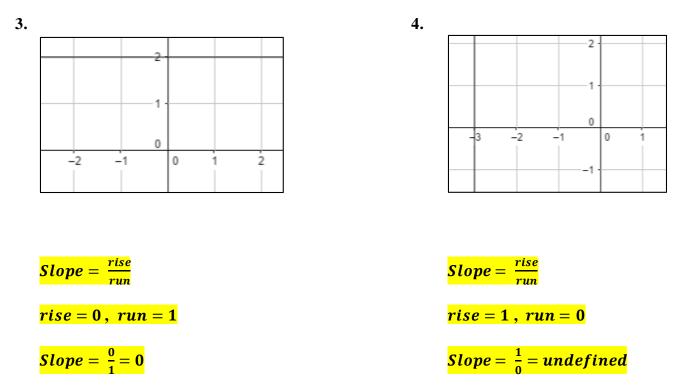
 $Slope = \frac{2}{1} = 2$


2. Distance Covered

Hours	Distance
1	50
2	150
3	80

Rate of change is not constant.

2.


3

$\frac{Slope}{run} = \frac{rise}{run}$
rise = −1 , run = 1
$Slope = \frac{-1}{1} = -1$

_____ Period: _____ Date: _____

Rate of Change and Slope Assignment

Find the slope of the line passing through the points given below.

1. (2,1) and (3,3) 2. (-1,-4) and (0,-7)

$Slope m = \frac{y_2 - y_1}{x_2 - x_1}$	$Slope m = \frac{y_2 - y_1}{x_2 - x_1}$
Slope $m = \frac{3-1}{3-2}$	Slope $m = \frac{-7 - (-4)}{0 - (-1)}$
Slope m = 2	<mark>Slope m = −3</mark>

3. (1,0) and (-4,2)

 $Slope \ m = \frac{y_2 - y_1}{x_2 - x_1}$ Slope $m = \frac{2-0}{-4-1}$ $Slope m = -\frac{2}{5}$

4. (8,-4) and (-6,-3)

 $Slope m = \frac{y_2 - y_1}{x_2 - x_1}$ Slope $m = \frac{-3 - (-4)}{-6 - 8}$ Slope $m = -\frac{1}{14}$