

Rate of Change and Slope

Unit 5 Lesson 1

Students will be able to:

Understand the concept of Rate of change and slope of a line

Key Vocabulary:

- Rate of Change
- Slope, Run, Rise
- Slope formula

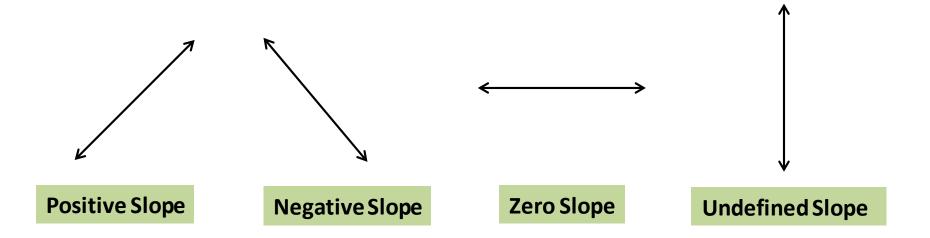
Rate of Change

The rate of change represents a relationship between changing quantities.

Rate of Change $= \frac{Change in dependent variable}{Change in independent variable}$

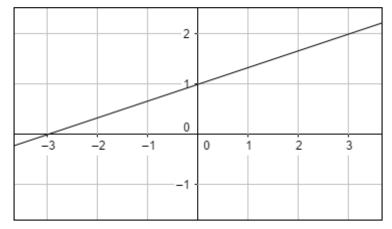
The rate of change can both be **positive** or **negative**, depending on the change in the dependent variable with respect to the independent variable.

<u>Slope</u>

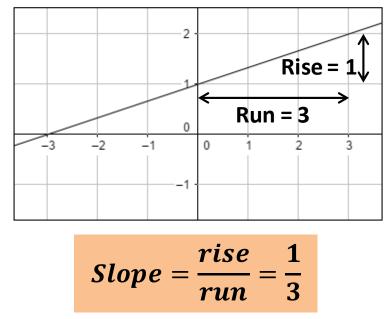

The rate of vertical change to the horizontal change between two points on a line is called the slope of a line.

$$Slope = \frac{vertical \ change}{horizontal \ change} = \frac{rise}{run}$$

Depending on the vertical or horizontal change, the slope can be **positive, negative, zero or undefined**.

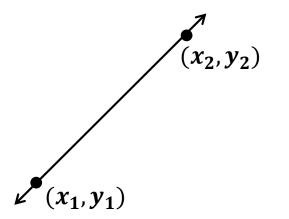


Models of Slope



Problem 1: What is the slope of the line shown in the graph? Is the slope positive or negative?

Problem 1: What is the slope of the line shown in the graph? Is the slope positive or negative?



The slope is positive. The line is slanting upwards from left to right.

Slope formula

Let (x_1, y_1) and (x_2, y_2) be two points on a line. Then the slope of the line is given by:

$$Slope \ m = \frac{y_2 - y_1}{x_2 - x_1}$$

Problem 2: What is the slope of the line passing through (2, 5) and (-1, 8)?

Problem 2: What is the slope of the line passing through (2, 5) and (-1, 8)?

$$y_2 = 8$$
 , $y_1 = 5$, $x_2 = -1$, $x_1 = 2$

Slope
$$m = \frac{8-5}{-1-2}$$

Slope
$$m = \frac{3}{-3} = -1$$

