比 Algebra1Coach.com

Factoring to Solve Quadratic Equations
Unit 9 Lesson 4

FACTORING TO SOLVE QUADRATIC EQUATIONS

Students will be able to:

Understand how to solve quadratic equations by factoring the quadratic equations.

Key Vocabulary:

- Quadratic Equation
- Zero-Product Property
- Solution By Factorization

FACTORING TO SOLVE QUADRATIC EQUATIONS

A quadratic equation is of the form:

$$
f(x)=a x^{2}+b x+c=0
$$

Where, $a \neq 0$.

FACTORING TO SOLVE QUADRATIC EQUATIONS

Zero-Product Property

This property is important when solving the quadratic equations. If the product of two or more numbers is zero, one of them must be equal to zero.

$$
a b=0 \quad \square a=0 \quad \text { or } \quad b=0
$$

FACTORING TO SOLVE QUADRATIC EQUATIONS

Problem 1: What are the solutions of the quadratic equation $y=(x+2)(x-3)$?

毘Algebra1Coach.com

FACTORING TO SOLVE QUADRATIC EQUATIONS

Problem 1: What are the solutions of the quadratic equation $y=(x+2)(x-3)$?

Apply the zero-product property:

$$
(x+2)(x-3)=0
$$

FACTORING TO SOLVE QUADRATIC EQUATIONS

Solution by Factorization

In this method, the middle term of the quadratic equation $a x^{2}+b x+c=0$ i.e. $\boldsymbol{b} \boldsymbol{x}$ is re-written as a sum of two terms $\boldsymbol{m} \boldsymbol{x}$ and $\boldsymbol{n} \boldsymbol{x}$ such that:

$(\pm m x) \times$ $(\pm n \boldsymbol{n})=$ $\left(\pm a c x^{2}\right)$

- The algebraic sum of two terms is equal to the middle term.
- The algebraic product of two terms is equal to the product of the quadratic term and the constant term.

After this, the equation can be simplified and written as $(x \pm m)(x \pm n)=0$ and zero product property can be applied to find the values of x.

FACTORING TO SOLVE QUADRATIC EQUATIONS

Problem 2: Find the solution of the quadratic equation $x^{2}-x-6$.

FACTORING TO SOLVE QUADRATIC EQUATIONS

Problem 2: Find the solution of the quadratic equation $x^{2}-x-6$.
Break the middle term i.e. $-x$ into two terms such that their sum is $-x$ and product is $1 x^{2} .(-6)=-6 x^{2}$.

Take $-3 x$ and $2 x$:

$$
\begin{aligned}
& \square(-3 x)+(2 x)=(-x) \\
& x^{2}-x-6=0 \quad \square x^{2}+2 x-3 x-6=0 \quad \square x(x+2)-3(x+2)=0 \\
& \square(x-3)(x+2)=0 \quad \square(x-3)=0 \text { or }(x+2)=0 \\
& x=3,-2
\end{aligned}
$$

