\qquad Period: \qquad Date: \qquad

Theoretical and Experimental Probability Bell Work

Solve problems involving Theoretical Probability.

1. What is the probability of getting an odd number in tossing a die?
2. What is a probability of drawing a black card in a 52 deck of card?
3. What is the probability of drawing a queen in 52 deck of card?

In rolling a pair of dice
4. What is the probability of getting a sum of 5 ?
5. What is the probability of getting a sum greater than 9 ?

In tossing a coin
6. What is the probability of getting both tails?
7. What is the probability of not getting both head?
\qquad Date: \qquad

Theoretical and Experimental Probability Bell Work

From a deck of cards, two cards are drawn at random. What is the probability that:
8. All two are jack?
9. All two are hearts?
10. All red black?
\qquad Date: \qquad

Theoretical and Experimental Probability Bell Work

Answer:

Solve problems involving Theoretical Probability.

1. What is the probability of getting an odd number in tossing a die?
$P(E)=3 / 6$ or $1 / 2$
2. What is a probability of drawing a black card in a 52 deck of card?
$P(E)=26 / 52$ or $1 / 2$
3. What is the probability of drawing a queen in 52 deck of card?
$P(E)=4 / 52$ or $1 / 13$
In rolling a pair of dice
4. What is the probability of getting a sum of 5 ?
$n(S)=36 ; n(E)=\{(1,4),(4,1),(3,2),(2,3)\}=5, P(E)=4 / 36$ or $1 / 9$
5. What is the probability of getting a sum greater than 9 ?
$n(S)=36 ; n(E)=\{(5,5),(6,4),(4,6),(6,5),(5,6),(6,6)\}=6, P(E)=6 / 36$ or $1 / 6$
In tossing a coin
6. What is the probability of getting both tails?
$n(S)=4 ; n(E)=1$, then $P(E)=1 / 4$
7. What is the probability of not getting both head?
$n(S)=4 ; n(E)=3$, then $P(E)=3 / 4$
From a deck of cards, two cards are drawn at random. What is the probability that:
8. All two are jack?
$\mathrm{n}(\mathrm{S})={ }_{52} \mathrm{C}_{2}=1326$
$n(E)={ }_{4} C_{2}=6$
$P(E)=6 / 1326$ or $1 / 221$
9. All two are hearts?
$\mathrm{n}(\mathrm{S})={ }_{52} \mathrm{C}_{2}=1326$
$\mathrm{n}(\mathrm{E})={ }_{13} \mathrm{C}_{2}=78$
$P(E)=78 / 1326$ or $1 / 17$
10. All red black?
$\mathrm{n}(\mathrm{S})={ }_{52} \mathrm{C}_{2}=1326$
$n(E)={ }_{26} \mathrm{C}_{2}=325$
$P(E)=325 / 1326$ or $25 / 102$
