\qquad Date: \qquad

Variables and Expressions Guide Notes

VARIABLES are symbols used to represent unspecified numbers or values. Any letter can be used as a variable.

ALGEBRAIC EXPRESSION consists of one or more numbers and variables along with one or more arithmetic operation.

Various ways to represent a product of \boldsymbol{x} and \boldsymbol{y} :

In each expression above, the quantities being multiplied are called factors, and the result is called the product.

Translating Verbal Expression into Algebraic Expression:

Addition	Subtraction
Plus	Minus
Sum of	Difference between/of
More than	Less than
Increased by	Decreased by
Combined	Fewer than
Together	
Total of	
Added to	

Multiplication
Times
Product of
Multiplied by

Division

Divided Quotient of Ratio of Per
Out of
percent
Total of
Added to
Example: three more than a number \boldsymbol{x}
Verbal Expression:

more than

a number \boldsymbol{x}

Algebraic Expression:

Sample Problem 1: Write each expression algebraically.
a. The product of 8 and a number \boldsymbol{x}
b. The difference between 16 and \boldsymbol{x} squared
c. The sum of 7 and \boldsymbol{m}
d. x divided by three
e. Four times eight plus \boldsymbol{n}

POWER is an expression that represents repeated multiplication of the same factor.
where: $\boldsymbol{x}=$ base
$\boldsymbol{n}=$ exponent, which corresponds to the number of times the base is used as a factors
\qquad Date: \qquad

Variables and Expressions Guide Notes

Symbol	Words	Meaning
$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}$ to the first power	$\mathbf{2}$
$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}$ to the second power	$\mathbf{2} \cdot \mathbf{2}$
$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}$ to the third power	$\mathbf{2} \cdot \mathbf{2} \cdot \mathbf{2}$
$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}$ to the fourth power	$\mathbf{2} \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{2}$
$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}$ to the fifth power	$\mathbf{2} \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{2}$
$\mathbf{2 n}^{\mathbf{6}}$	$\mathbf{2}$ times \boldsymbol{n} to the sixth power	$\mathbf{2} \cdot \boldsymbol{n} \cdot \boldsymbol{n} \cdot \boldsymbol{n} \cdot \boldsymbol{n} \cdot \boldsymbol{n} \cdot \boldsymbol{n}$
$\boldsymbol{x}^{\boldsymbol{n}}$	\boldsymbol{x} to the \boldsymbol{n} th power	$\boldsymbol{x} \cdot \boldsymbol{x} \cdot \boldsymbol{x} \cdot \boldsymbol{x} \cdot \boldsymbol{x} \cdot \ldots \cdot \boldsymbol{x}$

Example: $\mathbf{2}^{\mathbf{6}}$
Power:
2^{6}
$=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$
Base:

Exponent:

Sample Problem 2: Find each value.
a. $3^{2}=3 \cdot 3=9$
b. $4^{3}=4 \cdot 4 \cdot 4=64$
c. $\mathbf{5}^{2}=\mathbf{5} \cdot \mathbf{5}=\mathbf{2 5}$
d. $6^{2}=6 \cdot 6=36$
e. $2^{4}=2 \cdot 2 \cdot 2 \cdot 2=16$

Translating Algebraic Expression into Verbal Expression:
Example: 4m

Verbal Expression:

Sample Problem 3: Write a verbal expression for each algebraic expression.
a. $\mathbf{3 - t}$
b. $y+9$
c. $\frac{6}{s}$
d. $\mathbf{4 z}$
e. 21d-3

