Algebra 1

UNIT 1 - Interactive Notebook 1-1 The Real Number System

Name:

Date:

CCSS.MATH.CONTENT.8.NS.A.1

Know that numbers that are not rational are calledCommon Coreirrational.UnderstandinformallythateveryStandardsnumberhasadecimalexpansion;forrationalnumbers show that the decimal expansion repeats
eventually, and convert a decimal expansion which
repeats eventually into a rational number.

🚼 MathTeacherCoach.com

THE SET OF REAL NUMBERS

The diagram below shows how real numbers are classified.

Copyright © MathTeacherCoach.com

REAL NUMBERS can be **IRRATIONAL** or **RATIONAL**.

IRRATIONAL NUMBERS

Irrational means "not rational". These are the set of all numbers whose decimal representation are neither terminating nor repeating. It cannot be expressed as a quotient of integers. These numbers cannot be expressed as a ratio of two numbers

Examples:

$\pi, e, \frac{22}{7}, \sqrt{2}, \sqrt{3}, \sqrt{7}$

RATIONAL NUMBERS

These are the set of all numbers which can be expressed in the form: $\frac{a}{b}$, where a and b are integers and b is not equal to 0, written as $b \neq 0$. It can be expressed as **terminating** or **repeating** decimals.

Examples:

$$\frac{3}{4}, \frac{27}{11}, -2, -1, 0, 100, -25, 3.75$$

Copyright © MathTeacherCoach.com

RATIONAL NUMBERS can be NON-INTEGERS or INTEGERS.

NON-INTEGERS

These are the set of all numbers that is neither a positive whole number, nor a negative whole number, nor zero. These include **decimals**, **fractions**, and **imaginary numbers**.

Examples:

$$\frac{3}{4}, \frac{27}{11}, 9i, -\frac{1}{2}, -0.25, 1.75, \frac{5}{7}, 3\frac{2}{3}$$

INTEGERS

These are the set of numbers formed by **positive whole numbers, negative whole numbers, and zero**.

Examples:

$$\dots, -3, -2, -1, 0, 1, 2, 3, \dots$$

4

Copyright © MathTeacherCoach.com

INTEGERS can be **NEGATIVE** or **WHOLE NUMBERS**.

NEGATIVE INTEGERS

These are whole numbers **less than zero** and usually mean a value that is a deficit or shortage.

Examples:

$$\dots, -5, -4, -3, -2, -1$$

WHOLE NUMBERS

These are the set of numbers formed by adding **0** to the set of **natural numbers** (also called as counting numbers).

Examples:

 $0,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6,7,8,9,10,11,\ldots$

WHOLE NUMBERS include ZERO and POSITIVE INTEGERS.

ZERO

Zero denotes the absence of all magnitude or quantity.

0

POSITIVE INTEGERS

These are the set of numbers that include all **natural numbers** (also known as **counting numbers**)

Examples:

1, 2, 3, 4, 5, 6, 7, 8, ...

Copyright © MathTeacherCoach.com

Make it REAL!

Complete the diagram by making your own real number given its classification.

Copyright © MathTeacherCoach.com

Copyright © MathTeacherCoach.com

REAL NUMBERS ON THE NUMBER LINE

A **NUMBER LINE** is a straight line with numbers written in equal intervals. It can be used to show the sets of **real numbers** composed of **rational** and **irrational numbers**. On a **REAL NUMBER LINE**:

- There is a point that corresponds for every real number.
- There is a real number for each point.

OPPOSITES

In Mathematics, on the other hand, OPPPOSITES are denoted by the following signs:

Positive Sign +

This symbol is written before a number that is positive.

Example: +7 is read as "positive 7"

If there no sign before a number, then that number is considered positive.

Example: 7 is understood to be "positive 7"

Negative Sign

This symbol is written before a number that is negative.

Example: –7 is read as **"negative 7**"

It is very important to write that symbol before a negative number to indicate that it is negative.

Example: -10 is read as "negative 10"

Also, ZERO IS NEITHER POSITIVE NOR NEGATIVE.

Copyright © MathTeacherCoach.com

12

OPPOSITES ATTRACT!

Represent the following statements with integers.

STATEMNENTS	INTEGER
A withdrawal of \$1,000,000	
An increase of 5 degrees in temperature	
Oil leakage of 25 liters	
2 points increase in exam scores	

State the opposite of the of the given statements above and represent with an integer.

STATEMNENTS	INTEGER

Copyright © MathTeacherCoach.com

🚼 MathTeacherCoach.com

Task Cards

Copyright © MathTeacherCoach.com

14

Answers:

Make It Real!

Students answers may vary.

Opposites Attract!

STATEMNENTS	INTEGER
A withdrawal of \$1,000,000	-1,000,000
An increase of 5 degrees in temperature	<mark>+5</mark>
Oil leakage of 25 liters	<mark>-25</mark>
2 points increase in exam scores	<mark>+2</mark>

STATEMNENTS	INTEGER
A deposit of \$1,000,000	<mark>+1,000,000</mark>
A decrease of 5 degrees in temperature	<mark>-5</mark>
Oil refill of 25 liters	<mark>+25</mark>
2 points decrease in exam scores	<mark>-2</mark>

Task Cards

- 1. FALSE
- **2**. $-3\frac{1}{2}$
- 3. TRUE
- 4. -7
- 5.125
- 6.9 units to the right of zero.
- 7. TRUE
- 8. TRUE

Copyright © MathTeacherCoach.com