*

The Real Number System
Unit 1 Lesson 1

THE REAL NUMBER SYSTEM

Students will be able to:

- Classify the set of real numbers using their properties and characteristics.
- Relate the concept of "opposites" in real-life situations.
- Represent the real-life situations with integers.
- Graph/Plot real numbers on a number line.
- Differentiate positive integers form negative integers.
- Graph/Plot integers on a number line.
- Compare real numbers on a number line.
- Arrange real numbers given a specific order.
- Define absolute value.
- Find the absolute value of real numbers.

THE REAL NUMBER SYSTEM

Key Vocabulary:

Real Number
Irrational Number
Rational Number
Non-Integer
Integer

Whole Number

Counting / Natural Number
Positive Integers
Negative Integers
Number Line
Opposites
Absolute Value

THE REAL NUMBER SYSTEM

THE SET OF REAL NUMBERS

When we were young, we were taught how to count using the set of counting numbers.

$\{1,2,3,4,5,6, \ldots\}$

Little did we know that numbers too have different types. The tree diagram below shows the different types numbers and how each kind is related to one another.

THE REAL NUMBER SYSTEM

THE SET OF REAL NUMBERS

THE REAL NUMBER SYSTEM

THE SET OF REAL NUMBERS

REAL NUMBERS

Apparently, any number that you can think of are called REAL NUMBERS. These are the set of numbers that is formed by combining the rational numbers and the irrational numbers.

Examples:

$$
\pi, e, \frac{22}{7}, \sqrt{2}, \sqrt{3}, \sqrt{7}, \frac{3}{4}, \frac{27}{11}, 9 i,-2,-1,0,1,2,3
$$

THE REAL NUMBER SYSTEM

REAL NUMBERS can be IRRATIONAL or RATIONAL.

THE REAL NUMBER SYSTEM

REAL NUMBERS can be IRRATIONAL or RATIONAL.

RATIONAL NUMBERS

These are the set of all numbers which can be expressed in the form: $\frac{a}{b}$, where a and b are integers and b is not equal to 0 , written as $b \neq 0$. It can be expressed as terminating or repeating decimals.

Examples:

$$
\frac{3}{4}, \frac{27}{11},-2,-1,0,100,-25,3.75
$$

THE REAL NUMBER SYSTEM

RATIONAL NUMBERS can be NON-INTEGERS or INTEGERS.

NON-INTEGERS

These are the set of all numbers that is neither a positive whole number, nor a negative whole number, nor zero. These include decimals, fractions, and imaginary numbers.

Examples:

$$
\frac{3}{4}, \frac{27}{11}, 9 i,-\frac{1}{2},-0.25,1.75, \frac{5}{7}, 3 \frac{2}{3}
$$

THE REAL NUMBER SYSTEM

RATIONAL NUMBERS can be NON-INTEGERS or INTEGERS.

INTEGERS

These are the set of numbers formed by positive whole numbers, negative whole numbers, and zero.

$$
\begin{aligned}
& \text { Examples: } \\
& \qquad \ldots,-3,-2,-1,0,1,2,3, \ldots
\end{aligned}
$$

THE REAL NUMBER SYSTEM

INTEGERS can be NEGATIVE or WHOLE NUMBERS.

NEGATIVE INTEGERS

These are whole numbers less than zero and usually mean a value that is a deficit or shortage.

Examples:

$$
\ldots,-5,-4,-3,-2,-1
$$

THE REAL NUMBER SYSTEM

INTEGERS can be NEGATIVE or WHOLE NUMBERS.

WHOLE NUMBERS

These are the set of numbers formed by adding 0 to the set of natural numbers (also called as counting numbers).

```
Examples:
```

$$
0,1,2,3,4,5,6,7,8,9,10,11, \ldots
$$

THE REAL NUMBER SYSTEM

WHOLE NUMBERS include ZERO and POSITIVE INTEGERS.

THE REAL NUMBER SYSTEM

WHOLE NUMBERS include ZERO and POSITIVE INTEGERS.

POSITIVE INTEGERS

These are the set of numbers that include all natural numbers (also known as counting numbers)

Examples:

$$
1,2,3,4,5,6,7,8, \ldots
$$

THE REAL NUMBER SYSTEM

Sample Problem 1: Look at the numbers inside the box and classify each according to the type of number described.

	-0.2	1	$0 . \overline{4}$	$0.71771777177771 \ldots$				
π	3	7	41	56	-5	$\frac{7}{8}$,	$0.454545 \ldots$	
		0,	$-\frac{1}{2}$,	-100,	0.75,	$\sqrt{2}$		

a. Real Numbers

THE REAL NUMBER SYSTEM

Sample Problem 1: Look at the numbers inside the box and classify each according to the type of number described.

	-0.2	1	$0 . \overline{4}$	$0.71771777177771 \ldots$				
π	3	7	41	56	-5	$\frac{7}{8}$,	$0.454545 \ldots$	
		0,	$-\frac{1}{2}$,	-100,	0.75,	$\sqrt{2}$		

b. Irrational Numbers

THE REAL NUMBER SYSTEM

Sample Problem 1: Look at the numbers inside the box and classify each according to the type of number described.

	-0.2	1	$0 . \overline{4}$	$0.71771777177771 \ldots$			
π	3	7	41	56	-5	$\frac{7}{8}$,	$0.454545 \ldots$
		0,	$-\frac{1}{2}$,	-100,	0.75,	$\sqrt{2}$	

c. Rational Numbers

THE REAL NUMBER SYSTEM

Sample Problem 1: Look at the numbers inside the box and classify each according to the type of number described.
$\left.\begin{array}{|lllllllll|}\hline & -0.2 & 1 & 0 . \overline{4} & 0.71771777177771\end{array}\right]$.

d. Non-Integers

THE REAL NUMBER SYSTEM

Sample Problem 1: Look at the numbers inside the box and classify each according to the type of number described.

```
|lllllllllll
```

e. Integers

THE REAL NUMBER SYSTEM

Sample Problem 1: Look at the numbers inside the box and classify each according to the type of number described.

$$
\begin{array}{|lllllllll|}
\hline & -0.2 & 1 & 0 . \overline{4} & 0.71771777177771 \ldots \\
\pi & 3 & 7 & 41 & 56 & -5 & \frac{7}{8} & 0.454545 \ldots \\
& & & & & & \\
& & 0, & -\frac{1}{2}, & -100, & 0.75, & \sqrt{2}
\end{array}
$$

f. Negative Integers

THE REAL NUMBER SYSTEM

Sample Problem 1: Look at the numbers inside the box and classify each according to the type of number described.

```
|lllllllllllll
```

g. Whole Numbers

THE REAL NUMBER SYSTEM

Sample Problem 1: Look at the numbers inside the box and classify each according to the type of number described.

```
|lllllllllllll
```

h. Positive Integers

THE REAL NUMBER SYSTEM

Sample Problem 1: Solution

$$
\begin{array}{llllllll}
& -0.2 & 1 & 0 . \overline{4} & 0.717717771777711 \ldots \\
\pi & 3 & 7 & 41 & 56 & -5 & \frac{7}{8}, & 0.454545 \ldots
\end{array}
$$

a. Real Numbers $-0.2,1,0.4,0.71771777177771 \ldots, \pi, 3,7,41,56,-5, \frac{7}{8^{\prime}}$
$0.454545 \ldots, 0,-\frac{1}{2},-100,0.75, \sqrt{2}$

THE REAL NUMBER SYSTEM

Sample Problem 1: Solution

π	-0.2		0.4		0.71771777177771 ...			
	3				56		$\frac{7}{8}$	0.
				$\frac{1}{2}$	-100	0.	,	

b. Irrational Numbers
$0.71771777177771 \ldots, \pi, \sqrt{2}$

THE REAL NUMBER SYSTEM

Sample Problem 1: Solution

\[

\]

c. Rational Numbers $-0.2,1,0.4,3,7,41,56,-5, \frac{7}{8}, 0.454545 \ldots, 0,-\frac{1}{2},-100,0.75$

THE REAL NUMBER SYSTEM

Sample Problem 1: Solution

| | -0.2 | 1 | $0 . \overline{4}$ | $0.71771777177771 \ldots$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| π | 3 | 7 | 41 | 56 | -5 | $\frac{7}{8}$ | $0.454545 \ldots$ |
| | | | | | | | |
| | | 0, | $-\frac{1}{2}$, | -100, | 0.75, | $\sqrt{2}$ | |
| | | | | | | | |

d. Non-Integers $-0.2,0.4,-5, \frac{7}{8}, 0.454545 \ldots,-\frac{1}{2}, 0.75$

THE REAL NUMBER SYSTEM

Sample Problem 1: Solution

$$
\begin{array}{llllllll}
& -0.2 & 1 & 0 . \overline{4} & 0.71771777177771
\end{array} \ldots
$$

e. Integers $1,3,7,41,56,-5,0,-100$

THE REAL NUMBER SYSTEM

Sample Problem 1: Solution

$$
\begin{array}{llllllll}
& -0.2 & 1 & 0 . \overline{4} & 0.71771777177771
\end{array} \ldots
$$

f. Negative Integers $\mathbf{- 5 , - 1 0 0}$

THE REAL NUMBER SYSTEM

Sample Problem 1: Solution

$$
\begin{array}{rrrrrrr}
& -0.2 & 1 & 0 . \overline{4} & 0.71771777177771 \ldots \\
\pi & 3 & 7 & 41 & 56 & -5 & \frac{7}{8}, \\
& & & & & & \\
& & & & & & \\
& & 0, & -\frac{1}{2}, & -100, & 0.754545 & \ldots \\
& & & & & \sqrt{2}
\end{array}
$$

g. Whole Numbers $1,3,7,41,56,0$

THE REAL NUMBER SYSTEM

Sample Problem 1: Solution

\[

\]

h. Positive Integers $\mathbf{1 , 3 , 7 , 4 1} 56$

THE REAL NUMBER SYSTEM

REAL NUMBERS ON THE NUMBER LINE

A NUMBER LINE is a straight line with numbers written in equal intervals. It can be used to show the sets of real numbers composed of rational and irrational numbers. On a REAL NUMBER LINE:

- There is a point that corresponds for every real number.
- There is a real number for each point.

THE REAL NUMBER SYSTEM

OPPOSITES

The idea of opposites used in real-life can include, but are not limited to the following:

Direction
North or South

 Temperature
Warm or Cold

THE REAL NUMBER SYSTEM

OPPOSITES

In Mathematics, on the other hand, OPPPOSITES are denoted by the following signs:

Positive Sign

This symbol is written before a number that is positive.
Example: +7 is read as "positive 7"

If there no sign before a number, then that number is considered positive.

Example: 7 is understood to be "positive 7"

Negative Sign

This symbol is written before a number that is negative.

Example: -7 is read as "negative 7"

It is very important to write that symbol before a negative number to indicate that it is negative.

Example: -10 is read as "negative $\mathbf{1 0}$ "

THE REAL NUMBER SYSTEM

OPPOSITES

Also, ZERO IS NEITHER POSITIVE NOR NEGATIVE.

THE REAL NUMBER SYSTEM

REPRESENTATIONS OF OPPOSITES IN REAL LIFE

POSITIVE	NEGATIVE
An increase of $\$ 1$ is denoted by +1.	A decrease of $\$ 1$ is denoted by -1.
Walking 10 steps north is denoted by +10.	Walking 10 steps south is denoted by 10.
An increase of 6 degrees in	
temperature is	
denoted by +6.	A decrease of 6 degrees in
temperature is	
denoted by -6.	

THE REAL NUMBER SYSTEM

Sample Problem 2: Represent the following with integers.

a. A weight loss of 7 kilograms
b. Walking 10 blocks north
c. 225 meters below sea level.
d. Going up the stairs by 6 steps

THE REAL NUMBER SYSTEM

Sample Problem 2: Represent the following with integers.
e. The temperature drops 5 degrees
f. Losing 10 points in a game
g. Moving a table 5 meters forward
h. A debt of $\$ 10,000$

THE REAL NUMBER SYSTEM

Sample Problem 2: Solution

a. A weight loss of 7 kilograms -7
b. Walking 10 blocks north
c. 225 meters below sea level.
-225
d. Going up the stairs by 6 steps
$+10$

THE REAL NUMBER SYSTEM

Sample Problem 2: Solution

e. The temperature drops 5 degrees $\mathbf{- 5}$
f. Losing 10 points in a game
g. Moving a table 5 meters forward 5
h. A debt of $\$ 10,000$

THE REAL NUMBER SYSTEM

INTEGERS ON THE NUMBER LINE

Integers, composed of negative whole numbers, positive whole numbers and zero, can be graphed or plotted on a number line.

The starting point of a number line is at its origin, at ZERO.

THE REAL NUMBER SYSTEM

INTEGERS ON THE NUMBER LINE

POSITIVE INTEGERS on the number line are the integers that are found to the right of zero. As the number line extends to the right of zero, the integers increase.
-4 is four units away $\quad+4$ is four units away to the left of 0 . to the right of 0 .

THE REAL NUMBER SYSTEM

INTEGERS ON THE NUMBER LINE

NEGATIVE INTEGERS on the number line are the integers that are found to the left of zero. As the number line extends to the left of zero, the integers decrease.
-4 is four units away $\quad+4$ is four units away to the left of 0 . to the right of 0 .

THE REAL NUMBER SYSTEM

Sample Problem 3: Graph the real numbers $-\mathbf{1}, \mathbf{3}, \mathbf{0}, \mathbf{2}, \frac{\mathbf{3}}{4},-\frac{1}{2}$ and $\mathbf{- 2 . 6}$ on the number line and write the numbers in increasing order.

THE REAL NUMBER SYSTEM

Sample Problem 3: Solution

THE REAL NUMBER SYSTEM

Sample Problem 4: Plot the integers $\mathbf{- 4}$ and $\mathbf{- 6}$ on the number line and write two inequalities, using the symbols > or <, that compare the two numbers.

THE REAL NUMBER SYSTEM

Sample Problem 4: Solution

THE REAL NUMBER SYSTEM
Sample Problem 5: Arrange the real numbers below in descending order.

$$
-0.25, \quad \frac{3}{4}, \quad-\frac{1}{2}, \quad 9, \quad 0,-7, \quad \frac{2}{3}, \quad-3, \quad 3, \quad 1
$$

THE REAL NUMBER SYSTEM

Sample Problem 5: Solution

$$
-0.25, \quad \frac{3}{4}, \quad-\frac{1}{2}, \quad 9, \quad 0, \quad-7, \quad \frac{2}{3}, \quad-3, \quad 3, \quad 1
$$

$$
9,3,1, \frac{3}{4}, \frac{2}{3}, 0,-0.25,-\frac{1}{2},-3,-7
$$

THE REAL NUMBER SYSTEM

ABSOLUTE VALUE OF A REAL NUMBER

ABSOLUTE VALUE of a real number is the distance between the origin and the point representing the real number. The symbol $|x|$ represents the absolute value of a number x.

The distance of -5 to the origin is 5 units. The distance of 5 to the origin is 5 units.

THE REAL NUMBER SYSTEM

Sample Problem 6: Evaluate and graph the numbers $\mid \mathbf{2 . 5 |}$ and $\left|-\frac{1}{2}\right|$ on the number line.

THE REAL NUMBER SYSTEM

Sample Problem 6: Solution

THE REAL NUMBER SYSTEM

Sample Problem 7: Determine the value of each.

a. $|0.25|$
b. $|-9|$
c. $\left|-\frac{6}{5}\right|$
d. $|-11|$
e. |32|

THE REAL NUMBER SYSTEM

Sample Problem 7: Solution

a. $|0.25|$
0.25
b. $|-9|$

9
c. $\left|-\frac{6}{5}\right|$
$\frac{6}{5}$
d. $|-11|$

11
e. |32|

32

